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All systems of interpenetrating sphere packings that occur with highest

symmetry in the cubic, hexagonal or tetragonal crystal family are tabulated.

Homogeneous sphere packings belonging to 49 different types may be

intertwined to systems of interpenetrating sphere packings belonging to 74

types. For all compatible lattice complexes, the coordinate and lattice

parameters are given. The corresponding patterns of interpenetration are

analysed. For the interpenetration of two, three, four, five and eight sphere

packings, eleven, three, five, one and two different patterns, respectively, are

distinguished. In addition, four types of interpenetrating layers of spheres were

found. Each such sphere configuration splits into two or three subsets of parallel

sphere layers with an angle of 90� or of 120�, respectively, between the directions

of the normals of the layers. A single sphere layer corresponds either to a

honeycomb net or to a net built up from quadrangles and octagons.

1. Introduction

Already in 1975, Wells realized that the crystal structures of

certain inorganic compounds might be described by means of

interpenetrating two- or three-periodic nets. Well known

examples are the H2O modifications ice VII, VIII and X (cf.

e.g. Pruznan et al., 1993) and the mineral cuprite Cu2O (cf. e.g.

Restori & Schwarzenbach, 1986), which each consist of two

interpenetrating cristobalite-like networks. Even the crystal

structures of certain organic substances may be looked at as

interpenetrating three-periodic nets if one takes into account

hydrogen bonds in addition to covalent bonds (cf. e.g. Ermer,

1988; Ermer & Eling, 1988; Ermer & Lindenberg, 1991).

In the last decade, the geometry and topology of infinite

networks has attained much attention, especially in the field of

crystal engineering of new porous solids like metal–organic

framework materials that may lead to important applications

like catalysis, gas separation or gas storage. One-, two- or

three-periodic nets are used for the description and the clas-

sification of porous structures, since, on the basis of covalent

and non-covalent bonds, the complicated structures can be

attributed to nets, which may more easily be identified. In

many metal–organic structures, two or more interpenetrating

nets have been found. Batten & Robson (1998) and Carlucci et

al. (2003) presented a large number of examples. The atomic

arrangement of a number of inorganic compounds can also be

described by means of interpenetrating nets (Baburin et al.,

2005). Many structural examples with this property are listed

by Batten (2001).

Often the underlying nets are rather simple even in

complicated crystal structures (cf. e.g. Delgado Friedrichs et

al., 2003; Blatov et al., 2004). In many cases, they correspond to

homogeneous sphere packings. Important nets that are found

in structures based on interpenetrating networks are, for

instance, the cubic and the tetragonal (10, 3) nets and the

diamond net (Wells, 1975). These nets correspond to homo-

geneous sphere packings of type 3/10/c1 (Fischer, 1973, 2004),

3/10/t4 (Fischer, 1991a, 2005) and 4/6/c1 (Fischer, 1973, 2004),

respectively.

Up to now, insufficient information on homogeneous

interpenetrating sphere packings has been published. Tables

of the types of interpenetrating sphere packings with cubic

symmetry (Fischer & Koch, 1976) do not contain information

on coordinates or lattice parameters. The tetragonal types

were presented only on a congress poster (Fischer & Koch,

1990) and information on the hexagonal types is strewn across

several papers dealing with homogeneous hexagonal sphere

packings (Sowa et al., 2003, Sowa & Koch, 2004, 2005, 2006).

In order to fill this gap, the present paper gives detailed

information on all types of homogeneous interpenetrating

sphere packings and of interpenetrating two-periodic sphere

layers that occur with highest symmetry in the cubic, tetrag-

onal or hexagonal crystal families.

2. Fundamentals

A point configuration is the set of all points that are generated

from an original point by application of all symmetry opera-

tions of a given space group G, i.e. it is the orbit1 of a given

point under the action of a space group G.

1 As ‘orbit’ is a very general mathematical term, comparable to the term
‘group’, it should be avoided without further specification.



Each point configuration can uniquely be assigned to a set

of spheres, called sphere configuration, in the following way:

(i) each point is the centre of a sphere; (ii) all spheres are

equal in size; (iii) each sphere is in contact with at least one

other sphere; (iv) no spheres overlap.

A sphere configuration with symmetry G is called a

(homogeneous) sphere packing if a chain of spheres with

mutual contact connects any two of its spheres. Otherwise, the

sphere configuration disintegrates into partial configurations.

The symmetry group of each such partial configuration is a

subgroup of G. It may be a point group, a rod group, a layer

group or again a space group.

In the latter case, the sphere configuration consists of

finitely many partial configurations that interpenetrate each

other without mutual contact. Each such partial configuration,

regarded by itself, forms a sphere packing with symmetry H,

where H is a subgroup of G with index i, and i is the number of

sphere packings that interpenetrate each other. The entire

arrangement, therefore, may be called a system of inter-

penetrating sphere packings.

In all other cases, the number of partial configurations is

infinite. If a sphere configuration is built up from two-periodic

configurations, then either all these layer-like partial config-

urations are oriented parallel to each other or two or three

sets of parallel sphere layers exists. In contrast to the more

general types of two-periodic net, parallel sphere layers can

never be catenated or interwoven. Sphere layers running in

different directions, however, necessarily must interpenetrate

each other. A corresponding sphere configuration is called a

system of interpenetrating sphere layers.

Let us regard a sphere configuration with space group G

and let s be the order of the site-symmetry group of any of the

spheres. Then, exactly s symmetry operations2 of G map this

sphere onto any other sphere of the sphere configuration. The

set of all those symmetry operations of G that map a certain

original sphere onto its contacting neighbour spheres forms a

set of generators of a subgroup of G, namely of the symmetry

group H of the respective partial configuration.

If G and H are identical, only one partial configuration

exists and the sphere configuration is a sphere packing. If H is

a space group but G and H are different, then the sphere

configuration splits up into i interpenetrating sphere packings,

where i is the index of H in G. Then, all symmetry operations

of H map, for example, a first individual sphere packing onto

itself, whereas each left coset of H in G maps this sphere

packing onto one of the other i � 1 ones.

Each sphere packing can uniquely be assigned to a graph, its

sphere-packing graph, as follows: (i) each centre of a sphere is

replaced by a vertex of the graph; (ii) two vertices of the graph

are connected by an edge if and only if the corresponding

spheres are in contact (cf. Fischer, 1971; Mittelpunktsfigur,

Heesch & Laves, 1933).

Two sphere packings are assigned to the same sphere-

packing type if the spheres of one sphere packing can be

mapped onto the spheres of the other one and vice versa under

preservation of all contact relationships between the spheres,

i.e. if the corresponding sphere-packing graphs are

isomorphic3 (cf. e.g. Fischer, 1991a).

Each sphere-packing type is designated by a symbol k/m/fn,

as was first introduced by Fischer (1971): k means the number

of contacts per sphere, m is the length of the shortest ring

within the sphere packing, f indicates the highest crystal family

for a sphere packing of that type (c: cubic, h: hexagonal,

t: tetragonal, o: orthorhombic) and n is an arbitrary number.

Closer inspection of interpenetrating sphere packings shows

that the definition of types can be transferred from sphere

packings to systems of interpenetrating sphere packings only if

the details of the interpenetration are considered. Sphere

packings of the same type can be intertwined in different ways:

(i) various numbers of sphere packings of a given type may be

combined; (ii) the rings in the sphere packings may be

differently catenated or the screws in the individual packings

may be differently arranged; (iii) the individual packings may

be oriented differently with respect to each other. Such

differences must be taken into account when defining types of

interpenetrating sphere packings (cf. examples below).

Two systems of interpenetrating sphere packings belong to

the same type of interpenetrating sphere packings if the indi-

vidual sphere packings belong to the same sphere-packing

type and if, in addition, the sphere packings are analogously

intertwined in both systems (cf. also Fischer & Koch, 1976), i.e.

if the numbers of individual packings are equal and the

catenation of the rings, the arrangement of the screws and the

mutual orientation of the individual packings are analogous in

the two systems.

A type of interpenetrating sphere packings can be char-

acterized by a symbol g[k/m/fn]i, where k/m/fn symbolizes the

type of the partial configuration and i is their number. The

preceding letter indicates the highest possible symmetry for

that type of interpenetrating sphere packing (c: cubic, h:

hexagonal, t: tetragonal). If i sphere packings of the same type

can interpenetrate in different ways, Roman numbers as lower

indices discriminate between these cases.

Example: Two sphere packings of type 3/3/c1 can be

combined to interpenetrating sphere packings belonging to

three different types, namely to c[3/3/c1]2
I, c[3/3/c1]2

II and

c[3/3/c1]2
III (cf. Fig. 1 and Table 1; Fischer, 1976; Fischer &

Koch, 1976). The two sphere packings are directly congruent

in the first two cases, whereas they are enantiomorphic in the

third case. For each individual sphere packing, one 20-

membered ring is emphasized in Fig. 1. The red and black

rings in c[3/3/c1]2
III are catenated in the same way as two

circular links of a chain, i.e. the black ring winds itself once

round the red one and vice versa. In the other cases, the

catenation of the two rings is more complicated: the first ring

winds itself twice round the second one in c[3/3/c1]2
I and three

times in c[3/3/c1]2
II.
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2 These s symmetry operations form a left coset of the site-symmetry group
under consideration.

3 Only recently, the authors identified a few cases where this purely graph-
theoretical definition does not sufficiently discriminate between sphere
packings of different types (cf. Koch & Sowa, 2004; Fischer, 2004).
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Table 1
Interpenetrating sphere packings occurring with highest symmetry in the cubic, hexagonal or tetragonal crystal family.

For all corresponding lattice complexes the parameters are tabulated. For orthorhombic space groups the lattice parameters are a = b, c.

Sphere-

packing

Pattern of

interpenetr.
Interp. Group Subgroup

type Symbol Min. surf. class G H df � x, y, z a or a = b, c d

c[3/3/c1]2
I c-e NO32-c4 Ia I4132 P4332 2 0.14411* 0.01434, 0.11000, 0.61434 5.58699 1.19697

P4132 �0.01434, 0.11000, 0.11434

c[3/3/c1]2
II c-f – IIa I4132 I213 2 0.19282* 0.01000, 0.01712, 0.15288 5.07029 1.25978

c[3/3/c1]2
III c-a G IIa Ia�33d – ..2 I4132 – ..2 0 0.11103 0.12500, 0.05801, 0.19199 6.09441 2.70138

IIa I�443d I213 2 0.12500, 0.05801, 0.19199 6.09441

IIa Ia�33 I213 2 0.12500, 0.05801, 0.19199 6.09441

h[3/4/c1]2 r-bc rPD Ia R�33m R�33m (�a, �b, 2c) 2 0.22327 0.28452, 0.06904, 0.36193 6.82843, 2.09077 1.39897

c[3/4/c5]2 c-a G IIa Ia�33d I4132 1 0.24885* 0.18099, 0.20915, �0.05000 5.86735 1.61710

c[3/4/c6]2 c-a G IIa Ia�33d I4132 1 0.15115 0.16667, 0.16667, 0.00000 6.92820 2.51661

c[3/4/c7]2 c-a G IIa Ia�33d I4132 1 0.12450 0.18750, 0.18750, 0.02589 7.39104 2.86042

h[3/4/h1a]2 h-q NO32-h10 Ia P6222 P6422 (a, b, 2c) 2 0.27835 0.45337, 0.12740, 0.35048 3.86895, 1.74129 1.34268

h[3/4/h2a]2 h-q NO32-h10 Ia P6222 P6422 (a, b, 2c) 2 0.29088 0.43559, 0.09867, 0.30202 3.51466, 2.01917 1.35954

h[3/4/h3]2 h-q NO32-h10 Ia P6222 P6422 (a, b, 2c) 2 0.24480 0.53120, 0.14951, 0.28580 3.66002, 2.21245 1.18738

t[3/4/t1]2
I t-b tD Ia P42/nnm – ..m I41/amd – .m. (a�b, aþb, 2c) 2 0.23110 0.15350, 0.15350, 0.11075 2.79237, 2.32456 1.84222

IIa I41/acd I�442d 3 0.15350, 0.00000, 0.05538 3.94901, 4.64911

Ia P�44n2 I�442d (a�b, aþb, 2c) 3 0.15350, 0.15350, 0.11075 2.79237, 2.32456

Ia P4222 I4122 (a�b, aþb, 2c) 2 0.34650, 0.15350, 0.11075 2.79237, 2.32456

IIa I41/acd I41/a 3 0.00000, 0.15350, 0.05538 3.94901, 4.64911

Ia P42/n I41/a (a�b, aþb, 2c) 3 0.15350, 0.15350, 0.11075 2.79237, 2.32456

IIa I41/acd Fddd (a�b, aþb, c) 2 0.15350, 0.00000, 0.30538 3.94901, 4.64911

IIa I41/acd I4122 2 0.00000, 0.15350, 0.30538 3.94901, 4.64911

o-b oD Ia Pnnn Fddd (2a, 2b, 2c) 3 0.15350, 0.15350, 0.11075 2.79237, 2.32456

t[3/4/t1]2
II t-b tD IIa I41/acd Fddd (a�b, aþb, c) 2 0.33199* 0.12500, 0.05178, 0.87500 3.69552, 3.69552 1.16342

t[3/4/t2]2
I t-b tD Ia P4222 I4122 (a�b, aþb, 2c) 2 0.22765 0.32625, 0.09162, 0.15574 2.54549, 2.83980 1.59671

t[3/4/t2]2
II t-a tG IIa I41/acd I4122 2 0.22765 0.13269, 0.04106, 0.17213 3.59986, 5.67959 1.86066

t[3/4/t3]2 t-b tD Ia P42/nnm I41/amd (a�b, aþb, 2c) 2 0.19875 0.27787, 0.10039, 0.11299 3.98413, 2.65552 1.86893

c[3/6/c3]2 c-b D Ia Pn�33m – ..m Fd�33m – ..m (2a, 2b, 2c) 1 0.32398* 0.10445, 0.10445, 0.36000 3.38503 1.18252

IIa Fd�33c F4132 1 0.05222, 0.05222, 0.18000 6.77006

Ia P4232 F4132 (2a, 2b, 2c) 1 0.10445, 0.10445, 0.36000 3.38503

IIa Fd�33c Fd�33 2 0.05222, 0.05222, 0.32000 6.77006

Ia Pn�33 Fd�33 (2a, 2b, 2c) 2 0.10445, 0.10445, 0.36000 3.38503

c[3/6/c5]2 c-c P IIa Ia�33d Ia�33 2 0.41603* 0.15000, 0.00000, �0.01514 4.94367 1.29178

h[3/6/h1]2 r-bc rPD Ia R�33m – .m R�33m – .m (�a, �b, 2c) 2 0.33598 0.11987, �0.11987, 0.13013 4.27156, 1.77523 1.53610

IIa R�33c R32 2 0.23974, 0.11987, 0.31506 4.27156, 3.55047

Ia R32 R32 (�a, �b, 2c) 2 0.23974, 0.11987, 0.36987 4.27156, 1.77523

IIa R�33c R�33 3 0.23974, 0.11987, 0.06506 4.27156, 3.55047

Ia R�33 R�33 (�a, �b, 2c) 3 0.23974, 0.11987, 0.36987 4.27156, 1.77523

c[3/8/c2]2 c-a G IIa Ia�33d I4132 1 0.52595* 0.06419, 0.16146, �0.04000 4.57202 1.05076

t[3/8/t1]2
I t-b tD IIa I41/amd I41md 3 0.39969* 0.20290, 0.12500, 0.19600 4.00000, 2.62000 1.01080

IIa I41/acd I41/a 3 0.49111* 0.18978, 0.11600, �0.05700 3.55992, 2.69211 1.02190

t[3/8/t1]2
II t-b tD IIa I41/acd Fddd (a�b, aþb, c) 2 0.53772* 0.21786, 0.09000, �0.05900 2.12120, 6.92518 1.06933

t[3/8/t5]2 t-a tG IIa I41/acd I4122 2 0.49503* 0.17471, 0.12136, �0.06000 2.35046, 6.12648 1.02004

c[3/10/c1]2
I c-a G IIa Ia�33d – .32 I4132 – .32 0 0.37024 1

8,
1
8,

1
8 2.82843 1.22474

IIa I�443d – .3. I213 – .3. 1 1
8,

1
8,

1
8 2.82843

IIa Ia�33 – .3. I213 – .3. 1 1
8,

1
8,

1
8 2.82843

t-a tG IIa I41/acd – ..2 I4122 – ..2 1 3
8,

3
8,

1
4 2.82843, 2.82843

IIa I41cd I41 2 3
8,

3
8, z 2.82843, 2.82843

IIa I41/a I41 3 3
8,

3
8,

1
4 2.82843, 2.82843

IIa I�442d I212121 2 1
8,

1
8,

1
4 2.82843, 2.82843

o-a oG IIa Ibca I212121 3 1
8,

1
8,

1
8 2.82843, 2.82843

t[3/10/c1]2
II t-b tD Ia P4322 P43212 (a�b, aþb, c) 3 0.44414* 0.12500, 0.25500, 0.31250 1.93758, 2.51219 1.00717

IIa I4122 I41 3 0.59386* 0.20700, 0.02100, 0.16600 2.40312, 2.44279 1.01140

h[3/10/h1]2 h-n – IIa P6122 P3112 2 0.52724* 0.44829, 0.05171, 0.37250 1.87727, 3.90471 1.01969

Ia P3221 P3121 (a, b, 2c) 3 0.57101* 0.41000, 0.07341, 0.42000 1.79416, 1.97358 1.02564

t[3/10/t4]2
I t-b tD Ia P42212 P43212 (a, b, 2c) 3 0.51038* 0.12500, 0.22297, 0.23000 1.98145, 2.09039 1.01297

P41212 (a, b, 2c) 0.22297, 0.12500, 0.23000

t[3/10/t4]2
II t-b tD IIa I�442d Fdd2 (a�b, aþb, c) 3 0.68110* 0.21630, 0.02500, 0.15650 2.29636, 2.33252 1.01637

c[4/3/c1]2 c-a G IIa Ia�33d – 2.22 I4132 – 2.22 0 0.36072 1
8, 0, 1

4 3.26599 1.52753

IIa I�443d – 2.. I213 – 2.. 1 1
8, 0, 1

4 3.26599

IIa Ia�33– 2.. I213 – 2.. 1 1
8, 0, 1

4 3.26599

IIa Pa�33 P213 2 1
8, 0, 1

4 3.26599

c[4/3/c4]2 c-a G IIa Ia�33d – ..2 I4132 – ..2 0 0.41017 0.12500, 0.22855, 0.02145 3.94239 1.35401

IIa I�443d I213 1 0.12500, 0.22855, 0.02145 3.94239

IIa Ia�33 I213 1 0.12500, 0.22855, 0.02145 3.94239

c[4/3/c6]2 c-b D Ia Pn�33m – .3m Fd�33m – .3m (2a, 2b, 2c) 0 0.24708 0.13763, 0.13763, 0.13763 2.56891 1.90604

t-b tD Ia P42/nnm – ..m I41/amd – .m. (a�b, aþb, 2c) 1 0.13763, 0.13763, 0.13763 2.56891, 2.56891



Acta Cryst. (2006). A62, 152–167 Koch, Fischer and Sowa � Interpenetrating sphere packings 155

research papers

Table 1 (continued)

Sphere-

packing

Pattern of

interpenetr.
Interp. Group Subgroup

type Symbol Min. surf. class G H df � x, y, z a or a = b, c d

IIa I41/acd I�442d 2 0.13763, 0.00000, 0.06882 3.63299, 5.13783

Ia P�44n2 I�442d (a�b, aþb, 2c) 2 0.13763, 0.13763, 0.13763 2.56891, 2.56891

Ia P4222 I4122 (a�b, aþb, 2c) 1 0.36237, 0.13763, 0.13763 2.56891, 2.56891

IIa I41/acd I41/a 2 0.00000, 0.13763, 0.06882 3.63299, 5.13783

Ia P42/n I41/a (a�b, aþb, 2c) 2 0.13763, 0.13763, 0.13763 2.56891, 2.56891

IIa I41/acd Fddd (a�b, aþb, c) 1 0.13763, 0.00000, 0.31882 3.63299, 5.13783

IIa I41/acd I4122 1 0.00000, 0.13763, 0.31882 3.63299, 5.13783

o-b oD Ia Pnnn Fddd (2a, 2b, 2c) 2 0.13763, 0.13763, 0.13763 2.56891, 2.56891

c[4/3/c11]2 c-c P Ia I23 P23 1 0.50078 0.35061, 0.14939, 0.08277 2.92766 1.03772

c[4/3/c13]2 c-d – Ia Ia�33 Pa�33 2 0.59893* 0.11768, 0.15587, �0.06400 3.47500 1.02152

c[4/3/c14]2 c-b D IIa Fd�33c F4132 1 0.51930 0.14968, 0.08599, �0.00876 5.78489 1.04596

c[4/3/c15]2
I c-b D Ia P4232 F4132 (2a, 2b, 2c) 1 0.32686 0.30830, 0.12461, 0.08011 3.37505 1.54337

c[4/3/c15]2
II c-b D IIa Fd�33c F4132 1 0.32686 0.15415, 0.06231, 0.04006 6.75011 1.47460

c[4/3/c20]2 c-a G IIa Ia�33d I4132 1 0.60174* 0.05500, 0.14971, �0.03706 4.37141 1.02443

c[4/3/c22]2 c-a G IIa Ia�33d I4132 1 0.48730* 0.14636, 0.03404, �0.02500 4.68984 1.02054

c[4/3/c23]2 c-a G IIa Ia�33d I4132 1 0.41442* 0.04640, 0.16028, 0.00000 4.95007 1.31489

c[4/3/c24]2 c-a G IIa Ia�33d I4132 1 0.35316* 0.10019, 0.13419, �0.01500 5.22114 1.44316

c[4/3/c25]2† c-a G IIa Ia�33d I4132 1 0.25124 0.13390, 0.10116, 0.00000 5.84872 1.68919

c[4/3/c26]2† c-a G IIa Ia�33d I4132 1 0.30002 0.16497, 0.04257, 0.03154 5.51284 1.62771

c[4/3/c27]2 c-a G IIa Ia�33d I4132 0 0.15784 0.17678, 0.17678, 0.00000 6.82843 2.51564

h[4/3/h1]2 r-bc rPD IIa R�33c – .2 R32 – .2 1 0.61302* 0.18667, 0.00000, 0.25000 3.09295, 1.85577 1.02291

IIa R3c R3 2 0.18667, 0.00000, z 3.09295, 1.85577

IIa R�33 R3 3 0.18667, 0.00000, 0.25000 3.09295, 1.85577

h[4/3/h5]2
I r-bc rPD Ia R32 R32 (�a, �b, 2c) 2 0.42202 0.19127, 0.05734, 0.28951 3.39581, 2.23625 1.18905

h[4/3/h5]2
II r-bc rPD IIa R�33c R32 2 0.42202 0.19127, 0.05734, 0.35525 3.39581, 4.47250 1.36708

h[4/3/h9a]2 h-q NO32-h10 Ia P6222 P6422 (a, b, 2c) 1 0.29631 0.45817, 0.11429, 0.31578 3.57190, 1.91916 1.40323

t[4/4/t1]2 t-b tD IIa I41/amd – .m. I41md – .m. 3 0.68999* 0.00000, 0.22000, 0.34500 2.29840, 2.29840 1.00946

IIa I4122 I41 3 0.00000, 0.22000, 0.34500 2.29840, 2.29840

IIa I41/a I41 3 0.00000, 0.22000, 0.34500 2.29840, 2.29840

IIa I�442d Fdd2 (a�b, a+b, c) 3 0.00000, 0.22000, 0.34500 2.29840, 2.29840

o-b oD IIa Fddd Fdd2 4 0.11000, 0.11000, 0.34500 3.25043, 2.29840

t[4/4/t3]2 t-b tD IIa I41/acd I41/a 2 0.57796* 0.16650, 0.11052, �0.04600 3.44817, 2.43823 1.01338

c[5/3/c3]2 c-c P Ia Im�33m – 4m.m Pm�33m – 4m.m 0 0.44653 0.29289, 0.00000, 0.00000 2.41421 1.39897

IIa Ia�33d Ia�33 1 0.14645, 0.00000, 0.00000 4.82843

r-bc rPD Ia R�33m – .m R�33m – .m (�a, �b, 2c) 1 0.09763, 0.19526, 0.19526 3.41421; 2.09077

IIa R�33c R32 1 0.19526, 0.09763, 0.34763 3.41421; 4.18154

Ia R32 R32 (�a, �b, 2c) 1 0.19526, 0.09763, 0.30474 3.41421; 2.09077

IIa R�33c R�33 2 0.19526, 0.09763, 0.09763 3.41421; 4.18154

Ia R�33 R�33 (�a, �b, 2c) 2 0.19526, 0.09763, 0.30474 3.41421; 2.09077

c[5/3/c10]2 c-b D Ia Pn�33m – ..m Fd�33m – ..m (2a, 2b, 2c) 0 0.34973 0.10714, 0.10714, 0.32143 3.29983 1.37437

IIa Fd�33c F4132 0 0.05357, 0.05357, 0.16071 6.59966

Ia P4232 F4132 (2a, 2b, 2c) 0 0.10714, 0.10714, 0.32143 3.29983

IIa Fd�33c Fd�33 1 0.30357, 0.30357, 0.41071 6.59966

Ia Pn�33 Fd�33 (2a, 2b, 2c) 1 0.10714, 0.10714, 0.32143 3.29983

c[5/3/c19]2 c-b D IIa Fd�33c F4132 1 0.50248 0.13390, 0.10116, 0.00000 5.84872 1.10750

c[5/3/c28]2 c-a G IIa Ia�33d I4132 0 0.59847 0.05908, 0.15230, �0.03414 4.37935 1.06459

c[5/3/c29]2 c-a G IIa Ia�33d I4132 0 0.35121 0.15441, 0.05741, 0.00000 5.23077 1.40363

c[5/3/c30]2 c-a G IIa Ia�33d I4132 0 0.27768 1
8,

1
8, 0 5.65685 1.73205

c[5/3/c31]2 c-a G IIa Ia�33d I4132 0 0.30293 0.03921, 0.16789, 0.03921 5.49509 1.66618

t[5/3/t1]2 t-b tD IIa I41/amd – .m. I41md – .m. 2 0.69156* 0.00000, 0.21771, 0.34300 2.29666, 2.29666 1.00998

IIa I4122 I41 2 0.00000, 0.21771, 0.34300 2.29666, 2.29666

IIa I41/a I41 2 0.00000, 0.21771, 0.34300 2.29666, 2.29666

IIa I�442d Fdd2 (a�b, aþb, c) 2 0.00000, 0.21771, 0.34300 2.29666, 2.29666

o-b oD IIa Fddd Fdd2 3 0.10885, 0.10885, 0.34300 3.24797, 2.29666

t[5/3/t22]2 t-b tD IIa I41/acd I41/a 2 0.57600* 0.17090, 0.10907, �0.04510 3.39633, 2 52178 1.01228

c[6/3/c25]2 c-b D IIa Fd�33c F4132 0 0.52282 0.14017, 0.08663, 0.00000 5.77186 1.14412

h[3/4/h1a]3 h-o Ia P6222 P6222 (a�b, aþ2b, c) 2 0.41753 0.41923, 0.19857, 0.40810 2.23374, 3.48257 1.02801

h[3/4/h3]3 h-o Ia P6222 P6222 (a�b, aþ2b, c) 2 0.36720 0.31929, 0.08711, 0.39290 2.11312, 4.42491 1.00766

c[3/4/t1]3 c-l IIa I�443d I�442d (a, b, c; b, c, a; c, a, b) 2 0.35311* 0.00000, 0.10000, 0.31750 4.14424 1.25436

t[3/4/t1]3 t-m Ia I41/amd – .m. I41/amd – .m. (a, b, 3c) 2 0.34665 0.00000, 0.15350, 0.33387 3.94901, 1.54970 1.18113

Ia I�442d I�442d (a, b, 3c) 3 0.00000, 0.15350, 0.33387 3.94901, 1.54970

Ia I4122 I4122 (a, b, 3c) 2 0.00000, 0.15350, 0.33387 3.94901, 1.54970

Ia I41/a I41/a (a, b, 3c) 3 0.00000, 0.15350, 0.33387 3.94901, 1.54970

o-m Ia Fddd Fddd (a, b, 3c) 3 0.07675, 0.07675, 0.33387 5.58474, 1.54970

t[3/4/t2]3 t-m Ia I4122 I4122 (a, b, 3c) 2 0.34147 0.13269, 0.04106, 0.23361 3.59986, 1.89320 1.11128

t[3/4/t3]3 t-m Ia I41/amd I41/amd (a, b, 3c) 2 0.29812 0.18913, 0.08874, 0.16948 5.63440, 1.77035 1.24805

c[4/3/c6]3 c-l IIa I�443d I�442d (a, b, c; b, c, a; c, a, b) 1 0.41609* 0.00000, 0.12257, 0.28489 3.92358 1.20920

t[4/3/c6]3 t-m Ia I41/amd – .m. I41/amd – .m. (a, b, 3c) 1 0.37062 0.00000, 0.13763, 0.29356 3.63299, 1.71261 1.22924

Ia I�442d I�442d (a, b, 3c) 2 0.00000, 0.13763, 0.29356 3.63299, 1.71261



Example: Two sphere packings of type 3/4/t1 can inter-

penetrate in two different ways (cf. Fig. 2 and Table 1). The

tetragonal axes of the two individual packings run parallel in

the case of t[3/4/t1]2
I and perpendicular to each other in the

case of t[3/4/t1]2
II.

Example: Two sphere packings of type 3/4/t2 can also

interpenetrate in two different ways (cf. Fig. 3 and Table 1).

Each such sphere packing contains two kinds of screw parallel

to c, namely with eight and with twelve spheres per translation

period. In t[3/4/t2]2
I, the axes of the screws of the same kind

coincide for both individual packings, whereas in t[3/4/t2]2
II

the axes of different kinds of screw coincide.

The density � of a sphere packing is defined as the volume of

all spheres within one unit cell divided by the unit-cell volume.

This definition can be transferred to interpenetrating sphere

packings without problems. The density � of a system of

interpenetrating sphere packings is defined as the volume of all

spheres within one unit cell divided by the unit-cell volume.

The rings within an individual sphere packing may be

subdivided into contractable and non-contractable ones. Any

ring of another individual packing does not thread a

contractable ring in a system of interpenetrating sphere

packings. All other rings are non-contractable. For simple

geometrical reasons, all three-membered or four-membered

rings in sphere packings are necessarily contractable.

3. Derivation of interpenetrating sphere packings

The enumeration of the types of interpenetrating sphere

packings with cubic (cf. Fischer & Koch, 1976) and with
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Table 1 (continued)

Sphere-

packing

Pattern of

interpenetr.
Interp. Group Subgroup

type Symbol Min. surf. class G H df � x, y, z a or a = b, c d

Ia I4122 I4122 (a, b, 3c) 1 0.00000, 0.13763, 0.29356 3.63299, 1.71261

Ia I41/a I41/a (a, b, 3c) 2 0.00000, 0.13763, 0.29356 3.63299, 1.71261

o-m Ia Fddd Fddd (a, b, 3c) 2 0.06882, 0.06882, 0.29356 5.13783, 1.71261

c[3/3/c1]4
I c-g IIIa Ia�33d P41,332 2 0.28823* �0.01434, 0.11000, 0.11434 5.58699 1.19697

c[3/3/c1]4
II c-h IIb Ia�33d I213 2 0.38563* 0.01000, 0.01712, 0.15288 5.07029 1.20163

c[3/3/c1]4
III c-i Ib P4232 – ..2 I4132 – ..2 (2a, 2b, 2c) 0 0.22206 0.25000, 0.11603, 0.38397 3.04721 1.67969

Ib F4132 P4332 2 0.12500, 0.05801, 0.30801 6.09441

Ib P4132 0.12500, 0.30801, 0.05801

Ib P23 I213 (2a, 2b, 2c) 2 0.25000, 0.11603, 0.38397 3.04721

t[3/4/t1]4 t-p IIIa P4/nnc Fddd (2a, 2b, 2c) 2 0.51643* 0.31689, 0.12500, 0.12947 2.25526, 3.18942 1.02796

t[3/4/t2]4 t-p IIIa P42/nbc I4122 (a�b, aþb, 2c) 2 0.48865* 0.19092, 0.10452, 0.11500 2.29722, 3.24876 1.02875

t[3/4/t1]5 t-r Ia I41/a I41/a (2a�b, aþ2b, c) 3 0.60249* 0.22158, 0.18750, 0.19000 1.81924, 4.20135 1.05612

c[3/3/c1]8
I c-j Ib I23 I213 (2a, 2b, 2c) 2 0.48940* 0.35397, 0.16000, 0.08603 2.95018 1.01576

c[3/3/c1]8
II c-k IIIb Fd�33c P41,332 2 0.49775* 0.13739, �0.10000, 0.00261 5.86717 1.04176

† Igor A. Baburin and Davide M. Proserpio (private communication) pointed out that the sphere packings of types 4/3/c25 and 4/3/c26 have a special property not previously observed:
although these sphere packings cannot be deformed into one another without opening sphere contacts their graphs are isomorphic. The pairs 4/3/h9a – 4/3/h9b, 3/4/h1a – 3/4/h1b, 3/4/h2a
– 3/4/h2b (Koch & Sowa, 2004) and 4/3/c32a – 4/3/c32b (Fischer, 2005) show the same behaviour. In contrast to these cases, however, the sphere packings of the new pair are generated
with different symmetry operations. This unusual property is transferred also to c[4/3/c25]2 and c[4/3/c26]2.

Figure 1
Interpenetrating sphere packings belonging to types (a) c[3/3/c1]2

I, (b) c[3/3/c1]2
II and (c) c[3/3/c1]2

III. Interpenetration patterns c-e, c-f and c-a,
respectively.



tetragonal (cf. Fischer & Koch, 1990) symmetry was done in an

analogous way as described in previous papers for the deri-

vation of all sphere packings with cubic (Fischer, 1973, 1974)

and tetragonal (Fischer, 1991a,b, 1993) symmetry. For this, the

already existing material has been reconsidered: each set of

symmetry operations referring to equal shortest distances

between points that are symmetrically equivalent with respect

to a certain space group G corresponds to a system of inter-

penetrating sphere packings if and only if the set generates a

space group H that is a subgroup of G with index i � 2.

The types of interpenetrating sphere packings with hexag-

onal and trigonal symmetry were derived together with the

sphere packings with the respective symmetry (Sowa et al.,

2003; Sowa & Koch, 2004, 2005, 2006).

All possible systems of interpenetrating sphere layers were

derived in an analogous way.

4. Results

4.1. Interpenetrating sphere packings

Table 1 contains a complete list of all types of inter-

penetrating sphere packings (column 1) except those that

occur only with orthorhombic or lower symmetry. The next

two columns describe for each type the pattern of the inter-

penetration (details in x5.6) by a symbol similar to those

introduced by Fischer & Koch (1976) and – if possible – by the

symbol of a three-periodic minimal surface. The fourth

column shows the so-called interpenetration class as defined

by Blatov et al. (2004).

Columns 5 and 6, respectively, display the symmetry group

G of the system of interpenetrating sphere packings and the

subgroup H of G that refers to one individual sphere packing.

It has to be noticed that in many cases H does not describe the

full symmetry group of such a sphere packing. H is only that

subgroup of G with index i that can be generated as described

in x2. The parameter regions that belong to the various types

of interpenetrating sphere packings may have up to four

degrees of freedom. The number df of degrees of freedom, i.e.

the dimension of the parameter region, is given in the next

column.

Most sphere-packing types encompass a packing with

minimal density (for details compare the paper by Koch et al.,

2005). This is also true for the types of interpenetrating sphere

packings. Therefore, the

last four columns of Table

1 refer to interpenetrating

sphere packings with

minimal density, if

possible: column 8 shows

the minimal density �,

columns 9 and 10 the

corresponding coordinates

and lattice parameters,

respectively (normalized

to a shortest distance of 1

between sphere centres of

an individual packing).

The last column gives

the shortest distance d

between sphere centres

from different individual

packings. In the case of a
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Figure 3
Interpenetrating sphere packings belonging to types (a) t[3/4/t2]2

I and
(b) t[3/4/t2]2

II. Interpenetration patterns t-b and t-a, respectively.

Figure 2
Interpenetrating sphere packings belonging to types (a) t[3/4/t1]2

I and
(b) t[3/4/t1]2

II. Interpenetration patterns t-b.

Figure 4
Interpenetrating sphere packings belonging to type t[3/8/t1]2

I with symmetries (a) I41/amd – I41md and (c) I41/acd –
I41/a. Interpenetration pattern t-b. (b) Type 6/3/t5 refers to the common limiting complex P42/mmc 4j of I41/amd 32i
and I41/acd 32g. The green lines show the additional sphere contacts.



type of interpenetrating

sphere packings without

a minimal density, the

information in columns 8

to 12 refers to an arbi-

trarily chosen point of

the respective parameter

region. An asterisk in

column 8 marks these

instances.

For certain types, the

interpenetrating sphere

packings can be generated

with different symmetry.

Then, information is given

in Table 1 for all corre-

sponding group–subgroup
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Table 2
Interpenetrating sphere layers occurring with highest symmetry in the hexagonal or tetragonal crystal family.

For all corresponding lattice complexes the parameters are tabulated. � is 90� in the case of I12/a(1).

Type Space group Subgroup df � x, y, z a, c or a, b, c d

t[63]2 I4/mcm – m.2m Cmm(m) – 2mm (aþb, c, a�b) 1 0.50579 0.15000, 0.65000, 0.00000 2.35702, 1.49071 1.02740
P4/nbm – ..m Pma(m) – ..m (aþb, c, a�b) 1 0.15000, 0.65000, 0.25000 2.35702, 1.49071
P42/ncm – ..m Pma(m) – ..m (aþb, c, a�b) 1 0.15000, 0.65000, 0.00000 2.35702, 1.49071
P4/mcc – m.. Pbm(b) – .m. (aþb, c, a�b) 2 0.15000, 0.65000, 0.00000 2.35702, 1.49071
P42/mbc – m.. Pbm(b) – .m. (aþb, c, a�b) 2 0.15000, 0.15000, 0.00000 2.35702, 1.49071
I�442m – ..m C2m(m) – ..m (aþb, c, a�b) 2 0.15000, 0.15000, 0.25000 2.35702, 1.49071
I4/m – m.. C12/m(1) – .m. (aþb, c, a�b) 2 0.15000, 0.65000, 0.00000 2.35702, 1.49071
Ibam – ..m C12/m(1) – .m. (aþb, c, a�b) 3 0.15000, 0.65000, 0.00000 2.35702, 2.35702, 1.49071
P4/nnc P11(2/n) (b, c, a) 2 0.10000, 0.25000, 0.25000 3.33333, 1.49071
P4/nnc Pba(b) (aþb, c, a�b) 2 0.15000, 0.65000, 0.12500 2.35702, 2.98142
P42/nbc Pba(b) (aþb, c, a�b) 2 0.15000, 0.15000, 0.12500 2.35702, 2.98142
P4/ncc Pb2(b) (b, c, a) 3 0.10000, 0.25000, 0.00000 3.33333, 1.49071
P�44c2 P212(2) (aþb, c, a�b) 2 0.15000, 0.65000, 0.00000 2.35702, 1.49071
P�44b2 P212(2) (aþb, c, a�b) 2 0.15000, 0.15000, 0.25000 2.35702, 1.49071
P�442c Pn2(b) (aþb, c, a�b) 3 0.15000, 0.65000, 0.00000 2.35702, 1.49071
P�4421c Pn2(b) (aþb, c, a�b) 3 0.15000, 0.15000, 0.25000 2.35702, 1.49071
P422 P212(2) (aþb, c, a�b) 2 0.15000, 0.65000, 0.25000 2.35702, 1.49071
P42212 P212(2) (aþb, c, a�b) 2 0.15000, 0.65000, 0.25000 2.35702, 1.49071
P42/n P12/a(1) (aþb, c, a�b) 2 0.15000, 0.65000, 0.00000 2.35702, 1.49071
P4/n P12/a(1) (aþb, c, a�b) 2 0.15000, 0.15000, 0.25000 2.35702, 1.49071
I�44 C12(1) (aþb, c, a�b) 3 0.15000, 0.15000, 0.25000 2.35702, 1.49071
Pccn P12/a(1) (aþb, c, a�b) 3 0.10000, 0.10000, 0.25000 2.35702, 2.35702, 1.49071
Pban P12/a(1) (aþb, c, a�b) 3 0.15000, 0.15000, 0.25000 2.35702, 2.35702, 1.49071
Pbcn P121/a(1) (aþb, c, a�b) 4 0.15000, 0.15000, 0.00000 2.35702, 2.35702, 1.49071
I222 C12(1) (aþb, c, a�b) 4 0.15000, 0.15000, 0.25000 2.35702, 2.35702, 1.49071
I12/a1 P121/a(1) (c, �b, a) 4 0.00000, 0.15000, 0.65000 1.49071, 2.35702, 2.35702

t[482]2 I4/mcm – ..m Cmm(m) – ..m (aþb, c, a�b) 1 0.48190* 0.16289, 0.66289, 0.13550 2.17055, 3.68994 1.10181
I4/m C12/m(1) (aþb, c, a�b) 2 0.16289, 0.66289, 0.13550 2.17055, 3.68994
I422 C22(2) (aþb, c, a�b) 2 0.16289, 0.66289, 0.11450 2.17055, 3.68994
I�44c2 C22(2) (aþb, c, a�b) 2 0.16289, 0.66289, 0.13550 2.17055, 3.68994
P4/mcc Pbm(n) (aþb, c, a�b) 2 0.16289, 0.66289, 0.13550 2.17055, 3.68994
P42/mbc Pbm(n) (aþb, c, a�b) 2 0.16289, 0.16289, 0.13550 2.17055, 3.68994
P4/ncc Pba(n) (aþb, c, a�b) 2 0.16289, 0.16289, 0.38550 2.17055, 3.68994
P42/nbc Pba(n) (aþb, c, a�b) 2 0.16289, 0.66289, 0.13550 2.17055, 3.68994
Ibam C12/m(1) (aþb, c, a�b) 3 0.16289, 0.16289, 0.13550 2.17055, 2.17055, 3.68994

h[63]3 P6/mcc – ..m Pbm(n) – m.. (b, c, 2aþb) 2 0.47176* 0.45145, 0.13500, 0.00000 3.03521, 1.66937 1.08977
P622 P212(2) (b, c, 2aþb) 2 0.45145, 0.13500, 0.25000 3.03521, 1.66937
P�33c1 P21/b1(1) (b, c, 2aþb) 3 0.45145, 0.13500, 0.00000 3.03521, 1.66937
P�331c P11(2/n) (b, c, 2aþb) 2 0.45145, 0.13500, 0.00000 3.03521, 1.66937

h[482]3 P6/mcc Pbm(n) (b, c, 2aþb) 2 0.42590* 0.45264, 0.13500, 0.13658 3.05067, 3.66081 1.08662

Figure 5
Interpenetrating sphere packings belonging to type t[3/10/c1]2

II with symmetries (a) P4322 – P43212 and (c) I4122 –
I41. Interpenetration pattern t-b. (b) Type 6/3/t5 refers to the common limiting complex P42/mmc 4j of P4322 8d and
I4122 16g. The green lines show the additional sphere contacts.



pairs G – H. For all but three of these types, a uniquely defined

pair G – H exists where the interpenetrating sphere packings

occur with highest site symmetry. All other pairs G – H may

then be derived by subgroup degradation.

The three exceptional cases are h[3/10/h1]2 (Sowa & Koch,

2006), t[3/8/t1]2
I and t[3/10/c1]2

II. Each of these three types

exists in two parameter regions that belong to two different

lattice complexes with three degrees of freedom having a

common limiting complex. The point configurations referring

to this limiting complex, however, do not belong to the interior

of the two parameter regions but only to their boundaries. As

a consequence, it is impossible to deform a system of inter-

penetrating sphere packings from the first parameter range

into another system from the second range without allowing

additional contacts between spheres during the deformation

process. An analogous behaviour has been described before

for sphere-packing types 4/4/t29 and 4/6/t4 (cf. Fischer, 2005;

Koch et al., 2005).

Interpenetrating sphere packings of type t[3/8/t1]2
I may be

generated either in I41/amd 32i (Fig. 4a) or in I41/acd 32g

(Fig. 4c). Sphere-packing type 6/3/t5 refers to the common

limiting complex (P42/mmc 4j). Removal of three contacts per

sphere from such a packing and subsequent deformation

results in interpenetrating sphere packings either with

symmetry I41/amd or I41/acd. Consequently, three kinds of

contacts between spheres may be distinguished in a sphere

packing of type 6/3/t5: contacts that are preserved in the two

interpenetrating sphere packings of type 3/8/t1 (red or black

lines in Fig. 4b) and the additional contacts in sphere-packing

type 6/3/t5 (green lines in Fig. 4b).

Interpenetrating sphere packings of type t[3/10/c1]2
II occur

in P4322 8d (Fig. 5a) and in I4122 16g (Fig. 5c). They are also

related to a sphere packing of type 6/3/t5 (Fig. 5b), and again

P42/mmc 4j is the common limiting complex of both lattice

complexes.

4.2. Interpenetrating two-periodic layers of spheres

Two-periodic layers of spheres in mutual contact can

interpenetrate only if the layers do not run parallel to each

other. As a consequence, each infinite set of interpenetrating

layers consists of two or three subsets of layers with the

following properties: all layers of the same subset run parallel

and are not interwoven; each layer is entangled with all layers

from the other (two) subset(s). No such interpenetrating

layers exist with cubic symmetry. Two sets of such layers

perpendicular to each other are found with tetragonal

symmetry and three sets running perpendicular to 2a + b,

a + 2b and a � b with hexagonal symmetry.

Table 2 describes all types of interpenetrating two-periodic

layers of spheres. In column 1, these types are designated by

the symbols 63 or 482 of the corresponding vertex-transitive

plane nets (Shubnikov, 1916) in square brackets. These

symbols are preceded by the letter t or h depending on the

crystal system where the type of interpenetrating sphere layers

occurs with highest symmetry. A superscript 2 or 3 gives the

number of subsets of parallel sphere layers. The symmetry

group of the entire sphere configuration is shown in column 2,

whereas column 3 describes the layer group4 that corresponds

to one individual sphere layer. All other columns are analo-

gous to those in Table 1.

5. Discussion

Sphere packings of 49 types may interpenetrate. In total, they

lead to 74 types of interpenetrating sphere packings. Table 3

shows a list of these 49 types. Their sphere-packing symbols in

columns 1 are compared with the net symbols in column 2

used in the database RCSR (Reticular Chemistry Structure

Resource at http://okeeffe-ws1.la.asu.edu/RCSR/home.htm,

cf. also Delgado Friedrichs et al., 2003, 2005; Blatov et al.,

2004). For certain types of sphere packing, several possibilities

exist to fit i such packings into each other, where i may be

equal to 2, 3, 4, 5 or even 8. The numbers of types of i inter-

penetrating sphere packings are given in the last five columns.

If two sphere packings interpenetrate, both of them have

necessarily the same symmetry group H because H is a normal

subgroup of G, the symmetry group of the entire system. Then,

each symmetry operation from the coset of H in G maps H

onto itself and the two individual packings onto one another.

In the case of more than two interpenetrating sphere packings,

the situation is more complex depending on the normalizer of

H with respect to G, i.e. on NG(H) (cf. e.g. Koch et al., 2002).

Three cases may be distinguished.

1. NG(H) = G. As for i = 2, H is a normal subgroup of G and

is common, therefore, to all individual sphere packings. An

arbitrarily chosen set of representatives of the cosets of H in G

maps any first individual packing onto the other ones.

2. NG(H) = H. Each of the i individual packings corresponds

to its own subgroup H1, H2, . . . , Hi. All i subgroups are

conjugate in G. An arbitrarily chosen set of representatives of

the left cosets of, for example, H1 in G maps H1 onto H2, . . . ,

Hi and the first individual packing onto the other ones. It has

to be noticed that, in general, such sets of representatives

differ for the individual subgroups.

3. NG(H) 6¼ G and NG(H) 6¼ H. This can occur only if i is

not prime, i.e. if i equals 4 or 8 in the current context. Let ig be

the index of NG(H) in G and ih the index of H in NG(H) with

i = ig ih. Then ih individual packings share a common subgroup.

They can be generated from an arbitrary first one by means of

a set of representatives of the cosets of Hj in NG(Hj). There

exist ig different subgroups that are conjugate in G. As a

consequence, the representatives of the cosets of NG(Hj) in G

map the original subgroup Hj onto the other ig – 1 subgroups.

In addition, they map each of the first ih individual packings

onto ig – 1 further ones, resulting in i = ig ih different individual

packings in total.
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5.1. Interpenetration of two sphere packings

Intertwining of two congruent sphere packings gives rise to

58 types of systems of interpenetrating sphere packings (cf.

Table 1). 42 of them are simple because they refer to only one

type of group–subgroup pair G – H. In these cases, H is either

a class-equivalent or a translation-equivalent subgroup of G,

and all corresponding interpenetrating sphere packings can be

uniquely assigned to class Ia or IIa, respectively, as defined by

Blatov et al. (2004).

Class Ia occurs 13 times. If G and H are class-equivalent

rotation groups, two chiral sphere packings with the same

handedness interpenetrate each other and the systems of

interpenetrating sphere packings occur in enantiomorphic

pairs. There are 10 such types: c[3/3/c1]2
I, h[3/4/h1a]2,

h[3/4/h2a]2, h[3/4/h3]2, t[3/4/t2]2
I, t[3/10/t4]2

I, c[4/3/c11]2,

c[4/3/c15]2
I, h[4/3/h5]2

I, h[4/3/h9a]2. If G as well as H comprises

symmetry operations other than rotations, the individual

sphere packings are achiral: h[3/4/c1]2, t[3/4/t3]2, c[4/3/c13]2.

The other 29 types belong to class IIa. If H is that unique

subgroup of G that consists of all rotations of G, two chiral

sphere packings of different handedness interpenetrate. 22

such types occur: c[3/4/c5]2, c[3/4/c6]2, c[3/4/c7]2, t[3/4/t2]2
II,

c[3/8/c2]2, t[3/8/t5]2, c[4/3/c14]2, c[4/3/c15]2
II, c[4/3/c20]2,

c[4/3/c22]2, c[4/3/c23]2, c[4/3/c24]2, c[4/3/c25]2, c[4/3/c26]2,

c[4/3/c27]2, h[4/3/h5]2
II, c[5/3/c19]2, c[5/3/c28]2, c[5/3/c29]2,

c[5/3/c30]2, c[5/3/c31]2, c[6/3/c25]2. Two chiral sphere packings

of the same handedness are combined if G and H are both

pure rotation groups but belong to different crystal classes.

This case occurs only once, namely in c[3/3/c1]2
II. If symmetry

operations other than rotations exist in G as well as in H, all

individual sphere packings are achiral. Six such types are

found: t[3/4/t1]2
II, c[3/6/c5]2, t[3/8/t1]2

II, t[3/10/t4]2
II, t[4/4/t3]2,

t[5/3/t22]2.

The systems of interpenetrating sphere packings belonging

to the remaining 16 types can be generated with different

symmetry. Their discussion, therefore, is more complicated.

Four cases have to be distinguished.

(i) Let G – H be that group–subgroup pair where the

considered system of interpenetrating sphere packings is

generated with highest site symmetry. If H consists of all

rotations of G then all other corresponding group–subgroup

pairs have the same property and two chiral sphere packings

of different handedness interpenetrate. This is the case for the

following five types: c[3/3/c1]2
III, c[3/10/c1]2

I, c[4/3/c1]2,

c[4/3/c4]2, h[4/3/h1]2. All of them belong to class IIa according

to Blatov et al. (2004).

(ii) Types t[4/4/t1]2 and t[5/3/t1]2 occur with highest site

symmetry in I41/amd – I41md. All other corresponding group–

subgroup pairs are also translation-equivalent. Therefore, all

interpenetrating sphere packings of both types belong to class

IIa. Although the group–subgroup pairs I41/a – I41 and I4122 –

I41 would allow chiral individual sphere packings in principle,

nevertheless all existing partial configurations are achiral

because both space-group pairs do not permit additional

deformations in comparison to I41/amd – I41md.

(iii) Let G – H be that class-equivalent group–subgroup

pair where the considered system of interpenetrating sphere

packings is generated with highest site symmetry. If H contains

symmetry operations other than rotations, two achiral sphere

packings interpenetrate. According to Blatov et al. (2004),

they have to be assigned to class Ia. This concerns the

following types: t[3/4/t1]2
I, c[3/6/c3]2, h[3/6/h1]2, c[4/3/c6]2,

c[5/3/c3]2, c[5/3/c10]2. Interpenetrating sphere packings of all

six types occur also with lower symmetry and, in some cases,

with additional degrees of freedom. The corresponding

group–subgroup pairs may either be class-equivalent again or
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Table 3
The 49 types of sphere packings that give rise to interpenetrating sphere
packings.

Sphere-
packing Net

Types of interpenetrating sphere packings
with

type symbol i = 2 i = 3 i = 4 i = 5 i = 8

3/3/c1 srs-a 3 3 2
3/4/c1 nbo-a 1
3/4/c5 1
3/4/c6 sin = lcv-g 1
3/4/c7 lcv-f 1
3/4/h1a qtz-f 1 1
3/4/h2a qtz-g 1
3/4/h3 qtz-h 1 1
3/4/t1 dia-f 2 2 1 1
3/4/t2 dia-g 2 1 1
3/4/t3 lvt-a 1 1
3/6/c3 crs-f 1
3/6/c5 pcu-g 1
3/6/h1 pcu-h 1
3/8/c2 utc 1
3/8/t1 lig 2
3/8/t5 utg 1
3/10/c1 srs 2
3/10/h1 bto 1
3/10/t4 ths 2
4/3/c1 lcv = srs-e 1
4/3/c4 uno 1
4/3/c6 dia-a 1 2
4/3/c11 uku 1
4/3/c13 cbo 1
4/3/c14 ulh 1
4/3/c15 ulg 2
4/3/c20 1
4/3/c22 1
4/3/c23 ulf 1
4/3/c24 1
4/3/c25 uld 1
4/3/c26 uld-z 1
4/3/c27 lcv-a 1
4/3/h1 afw 1
4/3/h5 unp 2
4/3/h9a qtz-a 1
4/4/t1 lvt 1
4/4/t3 gis 1
5/3/c3 cab = pcu-a 1
5/3/c10 crs-a 1
5/3/c19 fcf 1
5/3/c28 fcn 1
5/3/c29 fco 1
5/3/c30 srs-f 1
5/3/c31 srs-g 1
5/3/t1 xft 1
5/3/t22 yfi 1
6/3/c25 snb 1



they may be translation-equivalent. Accordingly, the corre-

sponding interpenetrating sphere packings have to be assigned

to class Ia or to class IIa, respectively. Let us regard, for

instance, type c[5/3/c3]2. It refers to the following pairs of

class-equivalent groups: Im�33m – Pm�33m, R�33m – R�33m (2c),

R32 – R32 (2c) and R�33 – R�33 (2c) (class Ia). The respective

translation-equivalent group–subgroup pairs are Ia�33d – Ia�33,

R�33c – R32 and R�33c – R�33 (class IIa). Chiral individual packings

with the same handedness occur in R32 – R32 (2c), enantio-

morphic packings in R�33c – R32.

(iv) The remaining types are the three exceptional cases

described in x4. The individual sphere packings of types

t[3/10/c1]2
II and h[3/10/h1]2 are chiral with the same handed-

ness. Both types belong to one pair of class-equivalent and to a

second pair of translation-equivalent groups and, therefore,

either to class Ia or to class IIa, respectively. In contrast to

that, both group–subgroup pairs of type t[3/8/t1]2
I are trans-

lation-equivalent and lead to class IIa. The individual sphere

packings are achiral.

5.2. Interpenetration of three sphere packings

Three sphere packings of eight different types can be

combined to systems of interpenetrating sphere packings

belonging to eight different types (cf. Table 1). In all cases,

NG(H) = H is fulfilled. Accordingly, each of the three indivi-

dual packings belongs to a different subgroup H1, H2 and H3

of G with index 3.

For two of the eight cases, namely for c[3/4/t1]3 and

c[4/3/c6]3, the pair G – H is translation-equivalent. The three

tetragonal subgroups H1, H2 and H3 (type I�442d) of G = I�443d

differ in the directions of their tetragonal axes. They can be

mapped onto one another, for example, by a threefold rota-

tion of G. This rotation interchanges also the three individual

packings. Both types of interpenetrating sphere packings,

therefore, have to be assigned to class IIa (Blatov et al., 2004).

In the first case, the three individual packings belong to the

tetragonal type 3/4/t1 (cf. Fig. 6), whereas in the second case

three tetragonally distorted packings of the cubic type 4/3/c6

are combined.

The other six types of interpenetrating sphere packings

correspond to class-equivalent group–subgroup pairs G – H.

Then, the three subgroups H1, H2 and H3 differ only in the

positions of their origins and can be mapped onto one another

by a translation from G (class Ia). For h[3/4/h1a]3 (Fig. 7) and

h[3/4/h3]3, this translation vector can be chosen as (110), in

t[3/4/t1]3 (Fig. 8) and in all other cases as (001).

Only types h[3/4/h1a]3, h[3/4/h3]3 and t[3/4/t2]3 allow

enantiomorphic systems of interpenetrating sphere packings.

5.3. Interpenetration of four sphere packings

Four sphere packings of three different types may be

combined in five different ways (cf. Table 1). With respect to

NG(H), all three cases discussed above really occur.

1. NG(H) = G. This is true for only one type of inter-

penetrating sphere packing, namely for c[3/3/c1]4
II (Fig. 9).

The symmetry group H = I213 is a normal subgroup of

G = Ia�33d and is identical for all four individual packings,
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Figure 6
Interpenetrating sphere packings belonging to type c[3/4/t1]3. Interpene-
tration pattern c-l.

Figure 7
Interpenetrating sphere packings belonging to type h[3/4/h1a]3. Inter-
penetration pattern h-o.

Figure 8
Interpenetrating sphere packings belonging to type t[3/4/t1]3. Interpene-
tration pattern t-m.



therefore. H is a translation-equivalent subgroup of G with

index 4. A first individual packing can be mapped onto the

other three by three arbitrarily chosen symmetry operations,

one from each of the three cosets of H in G (class IIb). The

individual packings are chiral. Two packings with the same or

with different handedness can be combined to a system of

interpenetrating sphere packings of type c[3/3/c1]2
II (red/blue

or black/green in Fig. 9) or of type c[3/3/c1]2
III (green/blue or

black/red), respectively. A combination of two systems of the

same kind results in interpenetrating sphere packings of type

c[3/3/c1]4
II. In the first case, two systems with different hand-

edness have to be combined.

2. NG(H) = H. This applies only to type c[3/3/c1]4
III (Fig.

10). Here, the highest symmetry group G of the entire

arrangement is P4232. It has four maximal conjugate class-

equivalent subgroups Hj ( j = 1, 2, 3, 4) with index 4 and

doubled cell parameters (type I4132). The four individual

packings and their symmetry groups Hj can be mapped onto

one another, for example, by translations with vectors (100),

(010) and (001) (class Ib). A similar relation exists for all other

space-group pairs referring to c[3/3/c1]4
III. As the individual

packings are chiral and only packings with the same handed-

ness are combined, the systems of interpenetrating sphere

packings occur in enantiomorphic pairs.

3. NG(H) 6¼ G and NG(H) 6¼ H. Then, H is a general

subgroup of G with index 4 and ig = ih = 2 holds. This applies

to three types, namely to c[3/3/c1]4
I, t[3/4/t1]4 and t[3/4/t2]4. All

three belong to class IIIa.

The four individual packings of c[3/3/c1]4
I (Fig. 11) refer to

the two conjugate subgroups H1 = P4132 and H2 = P4332 of

Ia�33d with index 4. The common normalizer of H1 and H2 with

respect to G is NG(H1,2) = I4132. The centring translation of

I4132 combines two individual packings with symmetry P4132

or P4332 to pairs belonging to type c[3/3/c1]2
I. Each symmetry
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Figure 10
Interpenetrating sphere packings belonging to type c[3/3/c1]4

III. Inter-
penetration pattern c-i.

Figure 11
Interpenetrating sphere packings belonging to type c[3/3/c1]4

I. Inter-
penetration pattern c-g.Figure 9

Interpenetrating sphere packings belonging to type c[3/3/c1]4
II. Inter-

penetration pattern c-h.

Figure 12
Interpenetrating sphere packings belonging to type t[3/4/t1]4. Interpene-
tration pattern t-p.



operation from the coset of I4132 in Ia�33d, e.g. an inversion,

transforms one such pair into a second one with different

handedness (red/blue or black/green in Fig. 11).

A system of interpenetrating sphere packings of type

t[3/4/t1]4 with symmetry G = P4/nnc (Fig. 12) splits up into two

sets of individual packings with symmetry H1 and H2. Both

subgroups H1 and H2 of G belong to type Fddd. They are

parallel oriented and shifted against each other by a vector

(1
2

1
2

1
2) referred to a basis of G. Their common normalizer with

respect to G is NG(H1) = NG(H2) = Pnnn. Each symmetry

operation from the coset of H1 (or H2) in Pnnn, e.g. a trans-

lation with vector (001) referred to a basis of G, combines the

corresponding two individual packings with the same

symmetry (green/blue or black/red in Fig. 12) to a system of

type t[3/4/t1]2
I. Any symmetry operation from the coset of

Pnnn in P4/nnc, e.g. a fourfold rotation, maps the two systems

t[3/4/t1]2
I onto one another.

Type t[3/4/t2]4 forms a similar case (Fig. 13). Each such

system splits up into two enantiomorphic pairs of individual

packings of type t[3/4/t2]2
I. The symmetry groups H1 and H2 of

the two pairs belong to type I4122 with basis vectors a � b,

a + b, 2c. They are shifted against each other by a vector (1
2

1
2 0)

referred to G = P42/nbc. Each symmetry operation from the

coset of H1 (or H2) in NG(H1) = [NG(H2) =] P4222, e.g. the

translation with vector (001) referred to P42/nbc combines the

two individual packings with the same symmetry to a system of

type t[3/4/t2]2
I (green/blue or black/red in Fig. 13). Any

symmetry operation from the coset of P4222 in P42/nbc, e.g. an

inversion, maps two such systems of type t[3/4/t2]2
I onto

another.

5.4. Interpenetration of five sphere packings

Only one type of five interpenetrating sphere packings has

been found, namely t[3/4/t1]5 with symmetry G = I41/a (cf.

Table 1 and Fig. 14). All symmetry groups of the five indivi-

dual packings are different. They belong also to type I41/a, but

with enlarged lattice vectors 2a � b, a + 2b, c in comparison to

G. As i = 5 is prime, NG(Hj) equals Hj. Repeated application

of a translation e.g. with vector (100), if referred to G, maps

any of the subgroups together with its individual packing onto

the other four subgroups and individual packings. Accord-

ingly, type t[3/4/t1]5 has to be assigned to class Ia.

5.5. Interpenetration of eight sphere packings

Eight sphere packings of type 3/3/c1 can be combined in two

different ways (cf. Table 1), namely to systems of types

c[3/3/c1]8
I (Fig. 15) and c[3/3/c1]8

II (Fig. 16) with G = I23 and

G = Fd�33c, respectively. NG(H) = H applies to both cases

although the symmetries of the individual packings are

different, namely I213 and P4132 or P4332, respectively. Eight

different subgroups with index 8 correspond to the eight

individual packings. Interpenetrating sphere packings of both

types may be split up into two times four sphere packings that

belong to type c[3/3/c1]4
III.

The eight class-equivalent subgroups I213 of I23 differ only

in the positions of their origins. Translations by the basis

vectors of I23 map each individual packing onto three others.

The four packings form together a system of interpenetrating

sphere packings of type c[3/3/c1]4
III (e.g. black/red/light blue/

light green in Fig. 15) with symmetry P23. The centring

translations of I23 give rise to a second system with the same

handedness. c[3/3/c1]8
I, therefore, belongs to class Ib. The

same translations map also the eight subgroups of type I213

onto one another.

The two times four subgroups P4132 and P4332 of Fd�33c are

general ones with one common intermediate group F4132.

Therefore, c[3/3/c1]8
II has to be assigned to class IIIb. Appli-

cation of the centring translations of Fd�33c to any of the indi-

vidual packings results in a system of interpenetrating sphere
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Figure 14
Interpenetrating sphere packings belonging to type t[3/4/t1]5. Interpene-
tration pattern t-r.

Figure 13
Interpenetrating sphere packings belonging to type t[3/4/t2]4. Interpene-
tration pattern t-p.



packings of type c[3/3/c1]4
III with symmetry F4132 (e.g. black/

red/blue/green in Fig. 16). These translations map also the four

subgroups of type P4132 (or P4332) onto one another. Two

enantiomorphic systems of that type can be combined with the

aid of any symmetry operation from the coset of F4132 in

Fd�33c, e.g. an inversion. It interchanges in addition the four

subgroups of type P4132 with those four of type P4332.

5.6. Patterns of interpenetration

The symbols of the so-called interpenetration classes

(Blatov et al., 2004, column 4 of Table 1) show immediately

whether the individual sphere packings that interpenetrate are

in parallel or in different orientation and whether more than

one translation vector is needed to generate all packings in

parallel orientation from a given one. Unfortunately, different

orientations of the individual packings, enantiomorphic indi-

vidual packings or enantiomorphic systems of interpenetrating

sphere packings are not considered. Actually, these inter-

penetration classes do not really describe the geometrical or

topological properties of the interpenetration of two (or

more) three-periodic nets or sphere packings, but instead they

only classify the corresponding group–subgroup pairs of space

groups. The specific nets under consideration are completely

irrelevant to this classification. Moreover, in some cases,

exactly the same arrangement is assigned to different inter-

penetration classes if described with different symmetry (cf.

e.g. Table 1, type t[3/4/t1]2
I).

In contrast to this, the different patterns of interpenetration

for sphere packings (or also for interwoven three-periodic

nets) are classified in columns 2 and 3 of Table 1. A first such

attempt was made by Fischer & Koch (1976) for all types of

interpenetrating sphere packings with cubic symmetry.

If one disregards the details of the individual sphere

packings such as, for example, the contractable rings and looks

only at their mutual catenation, the pattern of the inter-

penetration can be compared for sphere packings of different

types. This will be demonstrated by the following examples.

(i) A sphere packing of type 4/6/c1 corresponds to an ideal

cubic diamond configuration (lattice complex cD). When

shifted against each other by the vector (1
2

1
2

1
2), two such sphere

packings may be fitted into each other. Then, however, they do

not result in a system of interpenetrating sphere packings but

they form together a packing of type 8/4/c1 that corresponds

to an ideal cubic body-centred lattice (lattice complex cI). Let

us now replace each sphere in a packing of type 4/6/c1 either

by a tetrahedron of four spheres or by a capped tetrahedron

made up of 12 spheres.5 The resulting sphere packings belong

to the cubic types 4/3/c6 and 4/3/c14, respectively. In both

cases, two sphere packings that are shifted against each other

by the vector (1
2

1
2

1
2) may be intertwined. They result in systems

of interpenetrating sphere packings of type c[4/3/c6]2 and

c[4/3/c14]2, respectively. The differences between the two

cases consist only in the existence of different contractable

rings and in the different lengths of some non-contractable

rings. As a consequence, the types c[4/3/c6]2 and c[4/3/c14]2

show the same pattern of interpenetration.

(ii) A sphere packing of type 3/3/c1 is built up from

contractable triangles of spheres around the cubic threefold

rotation axes. In addition, each sphere is in contact with one

sphere from another triangle so that large 20-membered rings

are formed. With symmetry Ia�33d, two enantiomorphic pack-

ings of this type may be intertwined, giving rise to inter-
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Figure 16
Interpenetrating sphere packings belonging to type c[3/3/c1]8

II. Inter-
penetration pattern c-k.

Figure 15
Interpenetrating sphere packings belonging to type c[3/3/c1]8

I. Inter-
penetration pattern c-j.

5 If applied to three-periodic nets instead of sphere packings, such a procedure
has been called ‘augmentation’ or ‘decoration’ by O’Keeffe et al. (2000).



penetrating sphere packings of type c[3/3/c1]2
III (cf. Fig. 1c).

Only the large rings are essential for the interpenetration

pattern, i.e. one can replace each triangle by only one sphere

with three contacts without changing the interpenetration

pattern. The resulting system of interpenetrating sphere

packings belongs to type c[3/10/c1]2
I. The centres of the

spheres form a point configuration of the invariant cubic

lattice complex cY**. If – on the other hand – each pair of

contacting spheres from different triangles is replaced by one

sphere, the interpenetration type does not change as well. In

that case, two sphere packings of type 4/3/c1 are formed giving

rise to interpenetrating sphere packings of type c[4/3/c1]2. The

corresponding point configuration belongs to the invariant

cubic lattice complex cV*. As a consequence, all three types of

interpenetrating sphere packings c[3/3/c1]2
III, c[3/10/c1]2

I and

c[4/3/c1]2 are assigned in Table 1 to the same pattern of

interpenetration.

In a similar manner, all types of interpenetrating sphere

packings are compared and assigned to interpenetration

patterns. Fischer & Koch (1976) used small letters (a to k) to

designate the different patterns of interpenetration with cubic

symmetry. A modified version of these symbols is applied in

the second column of Table 1. Another small letter indicating

the Bravais system precedes each symbol: cubic c, hexagonal

h, rhombohedral r, tetragonal t and orthorhombic o.

5.6.1. Cubic patterns. Within the cubic system, there are 33

different types of systems with two interpenetrating sphere

packings. They correspond to only six patterns of inter-

penetration, labelled c-a to c-f. Three of them, namely c-d, c-e

(Fig. 1a) and c-f (Fig. 1b), occur only once. The most frequent

pattern c-a (cf. Fig. 1c) appears 19 times. It describes the well

known interpenetration pattern of two sphere packings that

refer to the lattice complex cY** or cV* (cf. above). The

interpenetration patterns c-b of two cubic diamond arrange-

ments and c-c of two cubic primitive lattices are found eight

times and three times, respectively.

Patterns c-a, c-b and c-c correspond to the labyrinth graphs

of the three simplest cubic minimal surfaces without self-

intersection (cf. e.g. Fischer & Koch, 1989), the G surface

(gyroid), the D surface and the P surface. The two labyrinths

of a self-intersecting NO32-c4 surface (cf. Koch, 2000) inter-

penetrate each other in a way analogous to the two sphere

packings in a system of type c[3/3/c1]2
I. The symbols of such

minimal surfaces, therefore, offer an alternative possibility of

describing the interpenetration patterns. Column 3 of Table 1

contains such a symbol if a corresponding minimal surface

could be identified.

The two cubic types of three interpenetrating sphere

packings, c[3/4/t1]3 (cf. Fig. 6) and c[4/3/c6]3, show the same

interpenetration pattern c-l. The three types of four (Figs. 9–

11) and the two types of eight interpenetrating sphere pack-

ings (Figs. 15–16) differ in their interpenetration patterns.

5.6.2. Hexagonal and rhombohedral patterns. Hexagonal

systems of two interpenetrating sphere packings may show

two different patterns: h-n refers only to type h[3/10/h1]2,

whereas h-q occurs four times. It describes the interpenetra-

tion of two quartz-like arrangements with symmetry H =

P6422 in the supergroup G = P6222 (1
2c). The two labyrinths of

an NO32-h10 minimal surface (cf. Koch, 2000) show an

analogous pattern of interpenetration.

Both hexagonal types of three interpenetrating sphere

packings refer to interpenetration pattern h-o (cf. Fig. 7).

Three quartz-like arrangements are shifted against each other

by a vector perpendicular to the hexagonal c direction.

The only interpenetration pattern with rhombohedral

symmetry belongs to five types of interpenetration of two

sphere packings. It is designated r-bc because it may be

derived by rhombohedral deformation from the c-b pattern

with maximal symmetry Pn�33m – Fd�33m (2a) as well as from the

c-c pattern with maximal symmetry Im�33m – Pm�33m. In both

cases, the maximal rhombohedral symmetry is R�33m –

R�33m (2c). This relation is also reflected by the rhombohedral

family of minimal surfaces rPD (cf. e.g. Koch & Fischer, 1988)

with symmetry R�33m – R�33m (2c) that encompasses both a cubic

P surface (c/a = 1
4

p
6) and a cubic D surface (c/a = 1

2

p
6).

Accordingly, a cubic P surface (together with its labyrinth

graphs) can continuously be deformed into a cubic D surface

(with its labyrinth graphs). As a consequence, it does not make

sense to distinguish the corresponding two interpenetration

patterns within the rhombohedral system.

5.6.3. Tetragonal patterns. Two different patterns with

tetragonal symmetry for the interpenetration of two sphere

packings have been found: t-b occurs 13 times and t-a twice.

The t-b pattern may be derived from the c-b pattern by

tetragonal distortion. With maximal symmetry, it corresponds

to the group–subgroup pair P42/nnm – I41/amd (cf. Figs. 2a, 2b,

3a, 4a, 4c, 5a, 5c). Accordingly, a tetragonal family tD of

minimal surfaces exists that shows this symmetry. Such

surfaces may be regarded as deformed cubic D surfaces.

In a similar way, the t-a pattern is related to the c-a pattern.

Its maximal tetragonal symmetry is I41/acd – I4122 (cf. Fig. 3b).

As Fogden & Hyde (1999) showed, a family tG of minimal

surfaces with symmetry I41/acd – I4122 can be derived by

tetragonal distortion from the cubic G surface. The family of

tD surfaces, however, is also compatible with this symmetry

because the pair I41/acd – I4122 can be derived from

P42/nnm – I41/amd by subgroup degradation. As a conse-

quence and in contrast to the situation in the rhombohedral

system described above, there exist two minimal surfaces tD
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Figure 17
Interpenetrating sphere layers of types (a) t[63]2 and (b) t[482]2.



and tG for small values of the axial ratio c/a that differ in their

inherent symmetry P42/nnm – I41/amd and I41/acd – I4122,

respectively. The tD surface contains straight lines corre-

sponding to the twofold rotation axes of P42/nnm, whereas the

respective lines in the tG surface are screws. For c/a = 1.1315

(referred to I41/acd), these screws become straight lines (cf.

Fogden & Hyde, 1999) and the two surfaces are identical,

therefore. Cubic symmetry occurs for the tG surface at c/a = 1

and for the tD surface at c/a =
p

2 (both referred to I41/acd).

Above c/a = 1.1315, only tD surfaces are possible. As a

consequence, patterns t-b and t-a can be deformed into one

another with symmetry I41/acd – I4122, whereas symmetry

P42/nnm – I41/amd is compatible only with the t-b pattern.

This feature sets the tetragonal case apart from the rhombo-

hedral case described above and makes it plausible to distin-

guish between the patterns t-b and t-a.

Pattern t-m refers to the interpenetration of three diamond-

like arrangements that are shifted against each other parallel

to the tetragonal c direction. It corresponds to all three

tetragonal types of three interpenetrating sphere packings (cf.

Fig. 8).

There are two types of tetragonal systems of four inter-

penetrating sphere packings (Figs. 12, 13). For both cases, the

interpenetration pattern is t-p. Diamond-like arrangements

are shifted against each other parallel to a, b and c.

Pattern t-r corresponds to the only possibility of the inter-

penetration of five sphere packings (Fig. 14). Diamond-like

arrangements are shifted against each other by a vector

perpendicular to the tetragonal c direction.

5.7. Interpenetration of sphere layers

Only two of the eleven vertex-transitive plane nets (Shub-

nikov, 1916), namely the 63 net and the 482 net, allow analo-

gous interpenetrating layers of spheres.

Only a sphere configuration of type t[63]2 (Fig. 17a) can be

realized with minimal density �min = 0.50579. Surprisingly, the

respective sphere layers are flat but the hexagons are

compressed parallel to the tetragonal c direction and the

shortest normalized distance between centres of spheres from

different layers is only d = 1.02740. For undistorted 63 layers

with x = 1
6, a = 3

2

p
2 and c =

p
3 (if referred to I4/mcm), the

corresponding distance is increased to d = 1.11803 whereas � =

0.53742 is slightly larger. With hexagonal symmetry, even three

sets of 63 layers can interpenetrate. Then, the nets must

necessarily be corrugated (cf. Sowa & Koch, 2004).

Analogous patterns of interpenetration exist also for 482

sphere layers. The interpenetration of two sets of such layers

with tetragonal symmetry (Fig. 17b) requires a deformation of

the octagons. Again, three such sets can interpenetrate only if

the layers are corrugated (cf. Sowa & Koch, 2005).

6. Conclusions

Although the present investigation does not comprise the

orthorhombic, monoclinic and triclinic crystal systems, prob-

ably there exist no or at most very few additional types of

interpenetrating sphere packings. This statement, however,

may not be transferred to the interpenetration of three-peri-

odic nets in general. It is noteworthy that only a relatively

small number of different interpenetration patterns occur.

3/3/c1 is the sphere-packing type compatible with the largest

number of different interpenetration patterns. All the corre-

sponding eight types of interpenetrating sphere packings have

two degrees of freedom. They allow or even require individual

packings with different large deviations from the ideal

configuration. Fischer (1976) presented projections of the

parameter regions for the eight types of interpenetrating

sphere packings.

Hyde & Oguey (2000) derived some of the more compli-

cated interpenetration patterns in a completely different way,

namely by embeddings of infinite families of trees in the

hyperbolic plane and subsequent folding into three-periodic

minimal surfaces. Patterns c-a, c-e, c-f, c-i and c-k could almost

certainly be identified. In a recent paper, Baburin et al. (2005)

relate a large number of inorganic crystal structures to inter-

penetrating three-periodic nets. The greater part of the

corresponding interpenetration patterns agrees with the most

common patterns from Table 1, namely with c-a, c-b, c-c, t-b,

r-bc or h-q. It is noteworthy that the authors found four

interpenetrating nets in eglestonite with interpenetration

pattern c-h and three interpenetrating nets in Ag3CuS2 and in

CsCo(CO)4, both with interpenetration pattern t-m. On the

other hand, the six interpenetrating nets in the crystal struc-

tures of Zn[Au(CN)2]2 and Co[Au(CN)2]2 do not correspond

to any interpenetrating sphere packings. According to a

private communication (Igor A. Baburin, 2006), there also

exist examples of metal–organic crystal structures that can be

related to cubic systems of three, four or eight inter-

penetrating sphere packings with interpenetration patterns c-l,

c-i, c-j and c-k.

We thank the Deutsche Forschungsgemeinschaft for the

support of this work under KO 1139/1–1,3.
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